
Formally Verifying Data and Control
with Weak Reachability Invariants

Jeffrey Su, David L. Dill, and Jens U. Skakkebsek

Computer Systems Laboratory,
Stanford University, Stanford, CA 94305, USA
Phone: (650) 725-9046, Fax: (650) 725-6949

E-mail: {xsu,dill, jus}@cs . stanford.edu

Abstract Existing formal verification methods do not handle systems that com-
bine state machines and data paths very well. Model checking deals with finite-
state machines efficiently, but model checking full designs is infeasible because
of the large amount of state in the data path. Theorem-proving methods may
be effective for verifying data path operations, but verifying the control requires
finding and proving inductive invariants that characterize the reachable states of
the system.
We present a new approach to verification of systems that combine control FSMs
and data path operations. Invariants are specified only for a small set of control
states, called clean states, where the invariants are especially simple. We avoid the
need to specify the invariants for the unclean states by symbolically simulating
over all paths to find the possible next clean states.
The set of all paths from one clean state to the next is represented by a regular
expression, which is extracted from the control FSMs. The number of paths is
infinite only if the regular expression contains stars. The method uses a heuristic
to generalize the symbolic state to cover all of the paths of the starred expression.
We have implemented a prototype tool for guiding an existing symbolic simulator
and verification tool and used it successfully to prove properties of the Instruction
Fetch Unit of TORCH, a superscalar microprocessor designed at Stanford. With
much less effort, we were able to find all the bugs in the unit that were found
earlier by manually strengthening the invariants.

1 Introduction

Existing formal verification methods do not handle systems that combine finite-state
machines (FSMs) and data paths very well. Model checking [6, 5, 4] the full design is
infeasible because of the large amount of state in the data path. Verifying the control
FSMs in isolation is difficult, because specifying them independently is difficult - the
design requirements are usually stated as properties of the data path, not the FSMs
themselves. The specification of the control is that it causes the data path property to be
satisfied. Abstracting the data path to reduce the amount of state is sometimes possible,

I DISTRIBUTION STAÜPW5NT A
Approved for Publicjiigl$asei

Distribution, LM&ited 20020411 089

but it is subtle and may require changes in the control that introduce false errors or
cause true errors to be missed.

Theorem-proving methods require finding and proving inductive invariants that char-
acterize the reachable states of the system. This is not necessarily difficult for a system
that is implementing an algorithm (e.g. a floating point unit). However, when a design
has significant control complexity, finding invariants is primarily a tedious manual trial-
and-error process.

One path to a solution to these problems would be to find ways to reduce the effort
to find inductive invariants in these designs, through automation or methodology.* Al-
though the problem of automatic invariant discovery has been studied over the years,
there is not yet a complete solution to the problem [13, 11,7, 3, 18, 2, 1]. In particular
most of the work seems not to be applicable to register transfer level (RTL) hardware de-
signs. Most current designs are described at RTL using a hardware description language
(HDL) such as Verflog or VHDL, and are then manually or automatically synthesized.

Some of the invariants that are needed in a proof are historyless properties, by which
we mean that they are provable with no assumptions about the previous state of the sys-
tem. Equivalently, a historyless property is true of every state that has at least one prede-
cessor in a state transition graph of the system behavior. The concept can be extended
to include properties that hold for all states with at least one fc-predecessor, where a
fc-predecessor is a state from which there is a path of length k to the state satisfying
the invariants. Of course, for a historyless property to be an invariant, the initial state
must satisfy the property. In RTL designs, historyless invariants are surprisingly useful,
because they capture some important properties of data propagating through acyclic
chains of registers. Also, multi-phase designs (where alternating layers of registers are
clocked on different phases of a single clock) tend to lead to historyless invariants that
relate the contents of consecutive latches which are clocked in different phases. The dis-
covery and use of historyless invariants in RTL designs was explored in this conference
in 1996 [24]. The discovery of historyless properties is also a component of the work
cited above for finding invariants in software and protocol descriptions.

This paper attacks the invariant problem in another, complementary, way, by trying
to simplify the problem. Examination of a number of designs has revealed a general
tendency that can be exploited. Many systems can be thought of as processing a se-
quence of transactions, where processing a transaction involves a sequence of steps.
When the system is not processing a transaction, we say it is in a clean state. This paper
is based on the observation that the invariants that needed for the clean states are much
simpler than for the other states. The reason for this is simple: much of the complexity
of inductive invariants stems from capturing the bookkeeping that happens during the
processing of a transaction.

The partial solution proposed here is to identify the clean states of the system and
specify their invariants. These invariants are proved by symbolically simulating along
every path from each clean state q to the next clean state q', and showing that if the
invariant held in q, it will hold in each q' no matter what path was taken from q to q'.

1 It is important to distinguish between the difficulties of finding inductive invariants vs. proving
inductive invariants. In general, finding the invariants is much more difficult than proving them
after they have been found.

The paths between the clean states are described using regular expressions.
The most serious technical difficulty is that there can be an infinite number of paths

from q to q', because of cycles of unclean states along the path. However, in some
systems at least, these cycles are simple wait loops, so it can be shown that paths that
go around the cycle any number of times are equivalent to those that go around zero or
one times (these ideas are made more precise below).

Viewed at the level of abstraction of the previous paragraph, there is little new about
this approach. Indeed, it is very similar to very early work on program verification, espe-
cially the inductive assertions method of Floyd [9], which cuts all cycles in a program
flow graph, then finds assertions that hold at the end of the cycle if they hold at the
beginning. King specifically used symbolic simulation was to derive invariants [14].
Symbolic simulation along paths between major states has also applied to formal verifi-
cation of microprograms [8,15,16]. The idea of using regular expressions to represent
all possible execution paths comes directly from Tarjan [25], who suggested using reg-
ular algebra for program flow analysis.

However, RTL hardware design is quite different from sequential program and mi-
croprogram verification. To a programmer, RTL designs would appear to be very low-
level. Control flow is encoded into one or several FSMs which are separated from the
data path. Second, symbolic simulation of even one step results in a huge expression for
the symbolic state, since hundreds of state variables may be updated simultaneously. In
contrast, a single step in a sequential program or microprogram would typically be a
small number of assignments to variables.

While the approach comes out of a tradition of program verification and analysis,
these ideas have not previously been applied to RTL designs, however. The reason for
this is probably that synthesizable HDL descriptions do not express control flow in
the same way as sequential programs. Instead, FSM controllers are defined which are
separate from the data path. The method proposed here extracts the regular expressions
from the FSMs in the design, not the syntactic structure of the HDL. The other new
insight is that, in many cases, finding an invariant around a loop between clean states is
simple, because the loop often represents a wait state.

These results are preliminary. The proofs still require more effort than one would
hope, the invariants are still large (but much smaller than without the method), and it
has only been evaluated on one real design. However, it is a new approach that appears
to have the potential to be a practical verification method for some designs that are
difficult or impossible by other methods.

A simple example

A very simple example is depicted in Figure 1, which is used to make some of the
above discussion more concrete. The example consists of three registers, controlled by
a small state machine. Periodically, the new-data input to the state machine goes high,
and, in the next cycle, a new value is loaded into source. The state machine then waits
for a ready signal indicating that the new value can be transferred to dest. Then, half
the data in source is copied to middle and the state machine enters state J\; in the next
cycle, that value is copied to dest; simultaneously, the remaining data is copied from

new data

Source Middle Dest

(a)

Fig. 1. (a) Data Path (b) Control FSM

source to middle and the state machine enters T2. In the next cycle, the remaining data
is copied from middle to dest and the state machine returns to state C.

Suppose the system is specified to have the property that, whenever it is in state C,
the contents of source and dest registers are the same. Proving this by induction would
require providing an inductive invariant (which is actually the induction hypothesis),
which must be preserved by all state transitions. The inductive invariant would need to
include properties in addition to the basic requirement: When in state T\, the contents of
middle equals the lower half of source, and when in T^, the contents of middle equals the
upper half of source and the contents of dest equals the lower half of source. Intuitively,
the inductive invariant needs to track data movement step-by-step in its journey from
source to destination.

This type of phenomenon occurs very frequently, but the systems are obviously
more complex than this example, as are the additional properties required of the induc-
tive invariants. In real memory systems, for instance, memory values may be loaded
in many cycles and pass through several intermediate registers while being packed to-
gether in the right form. An invariant must relate all the intermediate registers with the
memory and cache for all the different modes of execution. Hence, in practice, finding
invariants is by far the most time-consuming task when verifying with a theorem prover.

The verification of a property only in clean states is illustrated in Figure 2.

p

[Clean I

Fig. 2. Verifying a property P only in the clean states.

The symbolic simulator operates on symbolic states, which map state variables to
logical expressions. For each clean state, the simulator is presented with a symbolic
state that initializes all storage elements to distinct symbolic constants. Also, a sequence
of logical conditions on the data path and inputs must be satisfied for a particular path
to be followed through the FSM. The conjunction of these conditions is called the path
constraint. The result of symbolically simulating over a path is a new symbolic state
and a path constraint.

To prove the invariant, it is then necessary to show that for each clean state that, if
the path constraint is satisfied and the invariant holds on the initial symbolic state, it also
holds for the symbolic states reached by symbolically simulating over all paths. The set
of all paths from one clean state to the next is represented by a regular expression, which
is extracted from the control FSMs. There number of paths is infinite only if the regular
expression contains stars. The method uses a heuristic to generalize the symbolic state
to cover all of the paths of the starred expression. From another viewpoint, the method
compresses sequences of steps through the state graph so that there is only a single
composite step from each clean state to the next. The composite step is computed by
symbolically simulating along multi-step paths.

In the example of Figure 1, we would define one clean state, C. Only the initial
invariant, that the source and dest registers are equal when in state C, would need to
be proved, but it would need to be proved for the symbolic states yielded by simulating
over all paths from C back to C.

This method has been used to prove invariants for the Instruction Fetch Unit of
TORCH [22, 21], a superscalar microprocessor designed at Stanford. The same bugs
were found as in an earlier effort [23], but with a major reduction in effort.

2 The Verification Method

Extracting regular expressions for control paths

Regular expressions are used because they make it easy to identify and handle cycles in
the FSMs. Hence, the first step of the method is to obtain regular expressions describing
all paths between the clean states. This requires extracting the state machine controllers
in Üie design, constructing a single product machine (called "the FSM," below), locating
the clean states within the FSM, and, for each clean state, deriving a regular expression
describing the control paths to the next clean states.

Currently, all of these steps are manual, although everything can be done by well-
known algorithms, except extraction of the FSMs from the HDL description. FSM ex-
traction can probably be done automatically in many cases; however, for the designs we
are considering, manual extraction by the designer is not difficult.

The FSM is a high-level finite state machine. The outputs are not modelled, since
they are not relevant for invariant checking. The transitions are labelled with logical for-
mulas, which are written in a quantifier-free fragment of first-order logic which includes
Boolean signals and operators, uninterpreted functions, equality, bitvectors, arithmetic,
and arrays. The logical formulas can include individual Boolean signals (which appear
as propositional symbols), or predicates on the data path signals (e.g., 'Vi = r2" to
represent the output of a comparator between two registers).

The alphabet of the regular language consists of the set of input values to the FSM.
Sets of inputs are represented as logical formulas (taken directly from the FSM).

More formally, a regular expression consists of

- The empty string, e;
- A Boolean formula over the input signals to the FSM;
- A concatenation of two regular expressions, (a • /?);
- A union of two regular expressions, (a + ß);
- Kleene closure of a regular expression, a*.

In our examples, we assume that * has higher precedence than •, which has higher
precedence than +, and drop parenthesis accordingly. In the Lisp implementation, the
regular expressions are actually represented using Lisp syntax.

For every clean state, we can construct from the original FSM a finite automaton
describing the set of all paths of non-zero length from that clean state to another clean
state that do not have clean states except at the beginning and end. The regular ex-
pression of all input sequences accepted by this finite automaton can be computed by
standard algorithms from finite automaton theory (see [10], for example).

In the example of Figure 1, the desired regular expression is:

new-data + new-data ■ ready ■ ready ■ True • True

In this case, the Boolean combinations are all single signals or their complements (indi-
cated by the overlining). In general, of course, a single "symbol" in the regular expres-
sion may be a more complex Boolean expression.

Guiding symbolic simulation

The symbolic simulator simulates a high-level netlist (HLN), which is a graph structure
representing a digital circuit. The vertices of the graph are circuit elements, such as
adders, Boolean gates, registers, and memories. The edges in the graph represent arrays
of wires. A symbolic state is a map from state variables (registers and memories) to log-
ical expressions representing the symbolic values of the state variables. Given an HLN,
a symbolic state S, and logical formulas for the circuit inputs, the symbolic simulator
returns a symbolic state representing the updated values of the state variables after one
clock cycle of execution of the circuit.

Symbolically simulating along the paths of a regular expression is called path simu-
lation. Path simulation operates on pairs (S, P), where S is a symbolic state and P is a
conjunction of Boolean formulas, called apath constraint. Given an HLN, a pair {S, P),
path simulation produces a finite set of pairs {(5', P')}, where P' is the conjunction of
P with additional path constraints.

For each clean state, we start with a symbolic state S that assigns the correct con-
stants to the FSM state variables and distinct symbolic constants to all other state vari-
ables. Path simulation along the regular expression from the clean state to every next
clean state yields a set of (S1, P') pairs representing the symbolic states and path con-
straints when the next clean states are reached.

If / is a Boolean formula on the state variables, I(S) represents the formula obtained
by substituting for each state variable in / the corresponding logical formula from S.
To prove that / is an invariant, we must show that P' A I(S) =>• I(S') for each pair
produced by the path simulation. The assumption that P' holds is justified, since the
FSM could only have followed the path if all the conditions in P' were satisfied.

At times, it is necessary or desirable to approximate a set of pairs with a single
pair. We say (S',P') approximates <S", P") if the validity of P' A I{S) =>• I(S') is
a sufficient condition for the validity of P" A I(S) =* I(S"). The approximation is
conservative: The approximation may cause the proof of a valid invariant to fail, but
will never allow an invalid invariant to be proved.

A simple approximation is used, called the merge of a set of pairs into a single pair.
If both states in the pair map a state variable to the same logical formula, the merged
state maps it to the same formula; otherwise, the merged state maps the state variable to
afresh symbolic constant, which is a named constant that has not previously appeared
in a symbolic state or path predicate. The merge of two pairs (S, P) and (5', P') is a
pair (S", P"), where S" is the merge of S and 5', and P" is the disjunction of P and
P'. Since validity is, by definition, truth in all interpretations, the fresh variables are
implicitly universally quantified, so this approximation satisfies the definition above.

Path simulation is guided by the recursive structure of the regular expression. Hence-
forth, "simulate means "symbolic simulate."

Concatenation Concatenation is handled very simply: to simulate the paths in a • ß,
starting with a simulation state (S, P), first simulate a from (S, P) to obtain a simula-
tion state {S',P A Pa), then simulate ß from (S',P A Pa) to obtain a symbolic state
(S",PAPaAPß).

Union There are two approaches used to simulate a + ß from pair (S, P). The most
obvious approach is to simulate a and ß separately, yielding two symbolic states. Fur-
ther simulation would be performed from these states separately. An invariant could be
proved by collecting the set of symbolic states after an entire simulation, and checking
the invariant for each state in the set. The problem with this approach is that it may redo
the same work many times, because the symbolic states will be very similar.

The second approach is to compute the merge of the two end states. This approx-
imation seems crude, but (surprisingly), works very well for verifying the TORCH
Instruction Fetch Unit, described in Section 4, and greatly reduces the complexity of
verification. However, note that this may lead to false errors in other designs.

Currently, the choice of which method to use for unions is manual. The regular ex-
pression is split into separate expressions which are simulated separately to give several
pairs. Pairs are merged for union operations within the individual expressions.

Repetition Obviously, one of the major problems is that there are an infinite number
of paths when the regular expression contains stars. The star operator is handled by
merging the results of simulating the starred expression a small number of times, to
find a symbolic state that subsumes the symbolic states that would be computed by

exactly simulating all possible numbers of iterations. This approach is similar to that
used with MDGs by Zhou et al. [26].

The basic method is to repeatedly simulate the expression inside the loop, merg-
ing the result with the previous result until the symbolic state is identical to the result
from the previous iteration, modulo renaming of the fresh variables. The pair (5*, P*)
resulting from this process approximates all the pairs that would have resulted from
simulating each of the paths represented by the cycle.

In some cases, this loop generalization is too conservative, resulting in false nega-
tives. For instance, in the TORCH memory system design some pipelined registers take
several cycles to reach a stable state when the FSM traverses the loop. If these registers
are generalized early, the method will propagate the fresh variables to other state vari-
ables, causing them to be generalized unnecessarily. To get a better loop approximation,
the user may direct the simulator to traverse the loop several times before the simulator
performs the generalization.

3 Verification Process

The the verification process is illustrated in Figure 3. Given a description of the im-
plementation in synthesizable Verflog, a translator converts the Verflog description into
an HLN description. A HLN machine corresponds to a Verilog module and consists of
a set of input names, output names, a set of type declarations which defines all input,
output, and local variables, and a set of behavior descriptions.

The HLN description is fed to an interactive guidance tool. The guidance tool takes
the HLN and the regular expression extracted from the FSM. It then simulates along
the paths described by the regular expression, with user interaction to determine how to
merge states in if-then-else constructs and around loops. Before the simulation, a sym-
bolic state and a symbolic input set are created. The symbolic simulator then uses this
state, input set, and the next state transition function to repeatedly execute the imple-
mentation and produce the next symbolic state. The simulator in turn calls a decision
procedure which is used to simplify the state and used to check equality between states
of separate execution paths. The end result is a set of simulation states, one for each
simulation path.

A proof obligation is then created for each simulation state. Let (S'^P-) be the
simulation state resulting from simulation path number i, starting from (S, True). The
proof obligation to prove correctness invariant / is then:

(P! AI(S)) ^ I(Si)

If the proof obligations generated for all simulation paths are valid and / is also true in
the initial state, then / is an invariant in all reachable clean states.

The logical formula is then fed to SVC (the Stanford Validity Checker) for check-
ing. SVC is a decision procedure for quantifier-free first-order logic and uses an algo-
rithm similar to the algorithms by Shostak [20, 19] and Nelson-Oppen [17]. The input
Boolean formula to SVC can contain Boolean operators, uninterpreted functions and
interpreted functions, and distinct constants such as the Boolean truth and bit constants.

Impl. (Verflog)
Verflog

Translator

Impl. (HLN)

Correctness
Property

Impl. (HLN)

Guidance Tool

Symbolic

Simulator Theorems
to prove

SVC

Valid

Counter Example

Fig. 3. The verification process.

It may also include the finite bitvectors and records used to model the state of the hard-
ware. SVC will either return with "Valid", or a counter-example. As SVC is used here,
the former indicates that the invariant holds, and the latter indicates that the invariant is
wrong, or one of the approximation steps has lost a critical constraint.

4 TORCH

We have applied the approach to verifying the correctness of the Instruction Fetch Unit
in the TORCH microprocessor. The TORCH design was created by Horowitz's group
at Stanford University from 1991-1992 and later optimized. It was constructed for re-
search into microprocessor architectures and has not been fabricated. TORCH is an
extension of the MIPS R2000/3000 design [12], which is a 32 bit instruction archi-
tecture with a five stage pipeline. It has been simulated (nonsymbolically) extensively,
although not to the same degree as in an industrial setting where the resources avail-
able for simulation are far greater. The Verflog source code of the TORCH is publicly
available at http://www-flash.stanford.edu/torch/.

The TORCH architecture is sketched in Figure 4. TORCH extends the MIPS ar-
chitecture with some extra optimizing features. It includes two asymmetric pipelines
with dual issue and dual retirement. To hold various status bits introduced by compiler
optimizations, the 32 bit instructions are extended with an extra byte, making the in-
structions 40 bit wide. For debugging purposes, TORCH can run in a special MIPS
compatible mode, where the optimizations are turned off (and the extra byte ignored).

We have previously verified properties of the RTL description of the Instruction
Fetch Unit (IFU) [23]. The IFU consists of four modules: an instruction cache (ICache),
the IFetch Data Path, the IFetch Control, and the PC Unit Data Path. The description of
the IFU consists of 1700 lines of Verflog and uses various common library routines that
total approximately 300 additional lines. There are 60 bits of control state (including
state machines and random registers with control information); 566 bits of the PC and
saved PCs/next PCs, etc.; 1200 bits of explicit data registers. The cache and memory are
modelled as unbounded arrays, but each memory word is 64 bits wide and each cache
line is 320 bits wide. In addition, each cache line has a 24 bit tag. A block diagram
appears in Figure 5.

Level 2 Cache

'

IFetch

Unit

Load/Store

Unit

TLB

■
1 Shadow Register File

■

A-slde

-—►

B-Slde

Decoder &

Execution Unit Execution Untt

Fig. 4. A diagrammatic overview of the TORCH architecture.

PC Unit
Datapath

IFetch
Control

ICache

IFetch
Datapath

ir |

L2Cache

Instrs

Fig. 5. The Instruction Fetch Unit (IFU).

The PC Unit Data Path maintains a program counter (PC) and calculates the next PC
based on input from the surrounding modules, in particular the decode/execute module.
The IFetch Data Path and Control return the instruction corresponding to a given PC.
The PC is looked up in the ICache buy matching the PC with the ICache tags. If there is a
match, called a hit, the instruction is returned. Otherwise, there is a miss and the IFetch
Control will output a stall signal and initiate communication with the main memory (in
actuality, the ICache communicates with a level 2 cache, but the model here merges
the level 2 cache and memory into a single unit) to fill the 8 instruction cache lines
(8 * (32 MIPS bits + 8 bits status information) = 320 bits). Once its request is being

serviced, the IFU receives two 32 bit words per cycle in 5 cycles, in total 10 words.
The first two words contain the eight status bytes, and the last 8 words are the MIPS
instructions. Each instruction is matched with its status byte and stored in the cache
line. The cache has 1,024 cache lines. Following this, a refetch occurs, the stall signal
is lowered, and the instruction is provided on the interface.

The unpacking and matching of MIPS instructions with status bytes is carried out to
provide compatibility with the MIPS architecture. Information is stored in 32 bit words
in memory. The unpacking is of course turned off when TORCH runs in MIPS mode
and only 8 words are loaded from memory during a cache miss.

5 Verifying TORCH

The correctness invariant is:

For every instruction location, if the location is registered in a valid cache line,
the contents of the cache line are the same as the contents of the line in memory.

The wording of this invariant is intentionally vague. "Contents of" hides the fact that
the true invariant is almost a page long, because the format of the data in the cache is
different from the format in memory. As the data is transferred, an extra byte of status
information is appended to every 32 bit word in the cache. So, comparing the contents of
the cache and memory requires extracting the appropriate 32 bit fields before comparing
them with the memory. Writing this expression is a bit tedious, but not intellectually
difficult

There is an FSM in the IFetch control logic and also one in the memory module.
The two state machines together implement the data transfer protocol on each side
of the memory bus. Each controls the data transfer on its side and keeps track of the
progress of the current transfer the memory line, i.e., how many pairs of instructions
that have been transferred. We form the product of the two FSMs to form a single FSM
representing the data transfer. The TORCH mode FSM is illustrated in Figure 6. The
FSM for the MIPS mode is similar, but slightly simpler.

The input signals of the FSM are: (1) cache miss (M) which triggers the cache miss
process, (2) MIPS mode (P) or TORCH mode P, (3) the ITLB miss (T) which signals
a miss in the TLB, (4) a nondeterministic delay (D) modeling the delay in the main
memory or level two cache, and (5) level two cache miss (L). The cache miss M is
a predicate on several state variables, and all other signals are inputs to the memory
system. The set of input symbols of the FSM is the set of predicates which consists of
terms from the following set:

{M, M, M, P, P, T, T, L,L,D, D}

The regular expression corresponding to the FSM is a union of three major paths
(see Figure 7). The first path in the expression represents a cache hit. The other two
represent a cache miss with and without TLB miss, respectively.

The memory is an array and the cache is an array of records containing three fields:
the valid bit (valid), the cacheline data (data), and the memory address (addr) of this

(D|L)&T D&L&T D&L&T

D&L&T

D&L&T

@3"
D&L&T

D&L&T D&L&T

Fig. 6. The product of the two memory system FSMs for the TORCH mode. For clarity we have
left out P (indicating TORCH mode) from every transition.

[[P_AM] _ _ _ _ _
+ [(P A M AT) • (P A (D V L) A T)* ■ (P A (D VL) A T) • P ■ (P A L)]
+ [(PA M AT) • (P A (D V L) A T)*JP A D A L A T)-

(PA DA LA T) * ■ (P_A D A LA T) • _ _ _ _ _ _
((P Afl AI AT) + (PA DAL AT)- (PAD AL AT)* (PAD AL AT))-
((P A DAL AT) + (PAD Al AT) -(PA DAL AT)* {PAD AL AT))-
((P A DAL AT) + (PAD AL AT) (PAD AL AT)*-(PAD ALA T))-
((P A_DA_r AT) +_(P A D A L A T) • (P A D A L A T)* • (P A D A L A T))-
(PALAT)-(PAL)]]

Fig. 7. The regular expression corresponding to the TORCH mode FSM.

cacheline. The correctness invariant above (that the contents of valid cache lines are
the same as the corresponding location in memory) must be proved. The base case of
the induction proof is trivial, since no cache lines are valid (the initial state is the state
immediately after initialization, and initialization flushes the cache). For the inductive
step, is to prove that if the property holds in an clean state S, then it is also valid in
the next clean state S'. A small trick is required to deal with the quantifier, since SVC
doesn't support quantification: we substitute a fresh variable for the quantifier in the
consequent (this is called Skolemizing) and manually instantiate the quantifier in the
antecedent as necessary.

A prototype guidance tool has been implemented in Lisp and applied it in the ver-
ification of the IFU. In the proof, each of the three paths in the regular expression was

handled separately. The proof for MIPS mode was similar. The run-times for simula-
tion and subsequent verification are shown Figure 8. The last column in the table lists
the possible number of paths after loop generalization. However, unions of paths were
collapsed into a single path using the generalization method described above.

Regular
Expr.

Mode Run-time Memory usage Possible Number
of paths

1 MIPS 00:17 16 MBytes 1
2 MIPS 03:43 52 MBytes 2
3 MIPS 30:22 72 MBytes 108
1 TORCH 00:17 16MBytes 1
2 TORCH 04:05 53 MBytes 2
3 TORCH 84:40 81 MBytes 324

Fig. 8. Combined run-times of the simulation and verification required for each path.

From the table of Figure 8, paths specified by the third and the sixth regular ex-
pressions take much more time than the rest of the paths do. This is due to the cost of
simulation. Most of the simulation time is spent on finding the loop approximation and
merging paths from union or loops, which needs to compare variables in two states.
Since the memory system has 86 state variables, the comparison is quite expensive.
However, without merging parallel paths, we would have 108 (108=22 x 33) and 324
(324=22 x 34) paths (each of the first two stars generating two paths and each union gen-
erating three paths) for MIPS 3 and TORCH 3, respectively. If the simulation had not
merged these parallel paths, the time for simulating these paths would have been about
108 and 324 times of the listed time for these two regular expression. The proofs were
carried out with many fewer strengthening invariants than previously needed. Apart
from the property, 12 extra conjuncts were needed to strengthen the invariant.

Two of these simply list the reachable states of the FSM for the phase one and phase
two latches of the state bits of the FSM. These invariants are evident from inspection of
the HDL source, or could be computed automatically by well-known state enumeration
algorithms. There is another invariant that says that the phase one and phase two latches
are the next state and current state of the FSM. This invariant is also apparent from the
HDL, or could be computed by extracting the next state function. There is also a simple
invariant that says that the internal reset low when the input reset is low.

Four of these were simple historyless invariants and were found by manually ap-
plying and existing method [24]. Here is a typical one: MemStallSl =» (FSMS1 =
FSMS2). This invariant says that whenever MemStallSl is false, the phase two vari-
able (FSMS2) has been overwritten by the phase one variable (FSMS1).

Four of the conjuncts (see Figure 9) had to be found by trial and error. Some of these
may be historyless properties that could not be found by the (incomplete) technique that
was used. There was one unexpected issue in the design that may contribute to the need
for these invariants. The FSM does not discover a read miss until the following cycle,
when it transitions to reflect the cache miss. The Hit state in the FSM thus corresponds
both to the hit states in the data path and the first miss state. Since the clean states are

TagS2 = PCChainS2r[29 : 3]
(FSMS2 = HIT) A IStallS2 =s> (PC = PCChainSlr)
(FSMS2 = HIT) A IStallS2 A TORCHMODE =>
(MemAddress = 5 x PCChaincs2r) A (MemAddress = 5 x PCChainSlr)
(((FSMS2 = HIT) A ICacheMiss) V FSMS2 # if/T) A TORCHMODE

=> (AfemAddregs = 5 x PCChainS2r)

Fig. 9. Four conjuncts of invariants found by inspection and trial and error. These are logically
accurate, but the notation and variable names have been modified for readability.

defined as the hit states, this requires the reachability invariant to be inductive on both
kinds of states.

This effort uncovered the same bugs as found by the previous method [23]. The first
bug is that it writes the tag of a noncacheable instruction into the ICache tag register file.
As in the MIPS architecture, TORCH provides for both cacheable and noncacheable
memory accesses. When the IFU fetches a noncacheable instruction, it causes a cache
miss and sends the request to main memory. When the noncacheable data arrives at
the IFU, the requested instruction is passed on to the decode/execute unit. Since the
instruction is noncacheable, neither the data nor the tag should be written to the ICache.
However, a bug in the implementation of the IFU causes the address tag of noncacheable
instructions to be written into the ICache tag, while the noncacheable data is not.

The other two bugs were found from the control logic of the PC tag. The first bug
causes the PC tag latch to not keep the current PC tag during an ICache miss. Instead,
it incorrectly stores the tag of the immediately following instruction. At the end of the
ICache miss, the tag corresponding to the next instruction is written into the ICache tag
register file while the ICache data corresponding to the current PC is correctly written
as ICache data.

We discovered a second bug immediately after the first one was corrected. Consider
two branches Bi and J32 with target addresses that have different tags Ti and T2 but
identical cache line indices. The bug manifests itself at the end of the ICache miss
caused by the target Ti of Bi: After the ICache line has been updated, the IFU issues
an internal refetch command to the ICache. This refetch gets the designated instructions
and its tag from the ICache, and the ICache tag is compared with the PC tag as in a
normal fetch. However, the bug causes the next PC tag to be loaded into the PC tag
latch before this comparison is done. Thus, if the new PC tag is different from the old
PC tag, this refetch will generate another ICache miss. This second cache miss will
cause the same data to be fetched, but will wrongly store target address T2 of JB2 in the
tag register file. Following this, the instruction for the target of Bi is correctly returned.
However, when the instruction for the target T2 of 2?2 is requested, T2 is already in the
target register file, which wrongly causes a hit. As a result, an instruction from the Bi
cacheline is incorrectly returned. As before, this causes TORCH to following a wrong
path of execution.

The original effort took 2 person-months. It is hard to estimate the effort required
by the new method, since the prototype tools were being developed while doing the

verification. Furthermore, the user was familiar with the design of TORCH as well as
the invariants. We guess that it would have taken 1-2 person-weeks without previous
knowledge of TORCH and the invariants.

6 Discussion

The technique described here is not universal. There are several restrictions and as-
sumptions about the design style:

- There is a simple property to be proved on some subset of the states (which we will
designate as the clean states).

- The number of clean states is small.
- The product of the control FSMs is small (no more than hundreds of states).
- Cycles are wait loops, in which state variables do not change.
- The control is not pipelined.

Interestingly, at least some designs fall within these guidelines, yet state enumeration
approaches are not easy to apply because of the difficulty of verifying the control FSMs
independently of the data path. We are investigating ways to remove and generalize
these restrictions.

The method needs to be more automated. The current implementation still involves
some manual work, such as extracting the finite state machine and finding the regular
expression. From the design in the HDL description, it should be possible to generate
the transition function for the control state machine automatically and then generate the
regular expressions using the existing algorithm. In addition, there needs to be a tool
that finds the historyless invariants automatically.

Acknowledgements

This work was sponsored under contract numbers DABT63-95-C-0049-P00005 and
DABT63-96-C-0097-P00002. The contents of this paper do not necessarily reflect the
position or the policy of the U.S. Government, and no official endorsement should be
inferred.

References

1. S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite state systems
compositionally and automatically. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification (CAV)98, volume 1427 of Lecture Notes in Computer Science, pages 319-
331, Vancouver, BC, Canada, June/July 1998. Springer-Verlag.

2. Saddek Bensalem, Yassine Lakhnech, and Hassen Sai'di. Powerful techniques for the auto-
matic generation of invariants. In Rajeev Alur and Thomas A. Henzinger, editors, Computer
Aided Verification (CAV)96, volume 1102 of Lecture Notes in Computer Science, pages 323-
335, New Brunswick, NJ, July/August 1996. Springer-Verlag.

3. N. S. Bj0rner, A. Browne, and Z. Manna. Automatic generation of invariants and interme-
diate assertions. Theoretical Computer Science, 173(l):49-87, February 1997.

4. R. E. Bryant, D. L. Beatty, and C.-J. H. Seger. Formal hardware verification by symbolic
ternary trajectory evaluation. In 28th ACM/IEEE Design Automation Conference, 1991.

5. J. R. Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in sym-
bolic model checking. In 28th ACM/IEEE Design Automation Conference, 1991.

6. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification
using symbolic model checking. In 27th ACM/IEEE Design Automation Conference, 1990.

7. M. Caplain. Finding invariant assertions for proving programs. In International Conference
on Reliable Software, pages 165-171, 1975.

8. W. Carter, W. Joyner, and D. Brand. Symbolic simulation for correct machine design. In
16th Design Automation Conference Proceedings (1979), pages 280-286, June 1979.

9. R. Floyd. Assigning meaning to programs. In Proc. Symposium in Applied Mathematics,
volume 19, pages 19-32, 1967.

10. R. W. Floyd. The Language of machines: an introduction to computability and formal lan-
guages. New York: Computer Science Press, 1994.

11. S. German and B. Wegbreit. A synthesizer of inductive assertions. IEEE Transactions on
Software Enginnering, l(l):68-75, March 1975.

12. G. Kane. MIPS RISC Architecture. Prentice Hall, 1988.
13. S. Katz and Z. Manna. A heuristic approach to program verification. In Proceedings: 3rd

International Joint Conference on Artificial Intelligence, pages 500-512, 1976.
14. J King. A program verifier. In Information Processing 71 Proceedings of the IFIP Congress,

volume 1, pages 234-249, 1972.
15. B. Levy. Microcode verification using sdvs-the method and a case study. In 17th MICRO

(1984), pages 234-245, 1984.
16. R. Mueller and M. Ruda. Formal methods of microcode verification and synthesis. IEEE

Software, 3(4):38-48, July 1986.
17. G.E. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM

Transactions on Programming Languages and Systems, l(2):245-257, October 1979.
18. Hassen Saldi and Susanne Graf. Construction of abstract state graphs with PVS. In Oma

Grumberg, editor, Computer Aided Verification (CAV)97, volume 1254 of Lecture Notes in
Computer Science, pages 72-83, Haifa, Israel, June 1997. Springer-Verlag.

19. R.E. Shostak. A practical decision procedure for arithmetic with function symbols. Journal
of the ACM, 26(2): 351-360, April 1979.

20. R.E. Shostak. Deciding combinations of theories. Technical Report SRI-CSL-132, Com-
puter Science Laboratory, SRI International, February 1982.

21. M. Smith, M. Horowitz, and M. Lam. Efficient superscalar performance through boosting.
In 5th International Conference on Architectural Support for Programming languages and
Operating Systems, pages 248-259, Boston, MA, 1992. IEEE/ACM.

22. M. Smith, M. Lam, and M. Horowitz. Boosting beyond static scheduling in a superscalar
processor. In 17th International Symposium on Computer Architecture, volume 18-2, pages
344-354, Seattle, WA, May 1990. IEEE/ACM.

23. J. Su, L. Arditi, S. Das, J. U. Skakkebaek, and D. L. Dill. Formal verification of the TORCH
microprocessor RTL design. Unpublished, 1998.

24. Jeffrey X. Su, David L. Dill, and Clark W. Barrett. Automatic generation of invariants in
processor verification. In M. Srivas and A. Camilleri, editors, Formal Methods in Computer
Aided Design (FMCAD), volume 4166 of Lecture Notes in Computer Science, pages 197-
201. Springer-Verlag, November 1996.

25. R. Tarjan. A unify approach to path problems. Journal of the ACM, 28(3):577-593, July
1981.

26. Z. Zhou, X. Song, S. Tahar, E. Cerny, R Corella, and M. Langevin. Formal verification of
the island tunnel controller using multiway decision graphs. In M. Srivas and A. Camilleri,

editors, Formal Methods in Computer Aided Design (FMCAD), volume 1166, pages 233-
247. Springer-Verlag, November 1996.

